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In recent years, there has been an increase in flash flood impacts, even as our ability to forecast events
and warn areas at risk increases. This increase results from a combination of extreme events and the
exposure of vulnerable populations. The issues of exposure and vulnerability to flash floods are not trivial
because environmental circumstances in such events are specific and complex enough to challenge the
general understanding of natural risks. Therefore, it seems essential to consider physical processes of
flash floods concurrently with the impacts they trigger. This paper takes a first step in addressing this
need by creating and testing the coherence of an impact-focused database based on two pre-existing
public and expert-based survey datasets: the Severe Hazards Analysis and Verification Experiment
(SHAVE) and the US National Weather Service (NWS) Storm Data. The SHAVE initiative proposes a new
method for collecting near-real-time high-resolution observations on both environmental circumstances
and their disastrous consequences (material and human losses) to evaluate radar-based forecasting tools.
Forecast verification tools and methods are needed to pursue improving the spatial and temporal accu-
racy of forecasts. Nevertheless by enhancing SHAVE and NWS datasets with socially and spatially rele-
vant information, we aim at improving future forecast ability to predict the amount and types of impacts.

This paper describes the procedures developed to classify and rank the impacts from the least to the
most severe, then to verify the coherence and relevance of the impact-focused SHAVE dataset via
cross-tabulation analysis of reported variables and GIS-sampled spatial characteristics. By crossing
impact categories with socio-spatial characteristics, this analysis showed first benchmarks for the use
of exposure layers in future flash flood impact forecasting models. The enhanced impact-focused datasets
were used to test the capabilities of flash flood forecasting tools in predicting different categories of
impacts for two extreme cases of flash flooding in Oklahoma, USA. Results showed a general tendency
for the more severe impacts to be associated to higher mean exceedances over tool values. This means
that, at least for these particular case studies, the tools were able to make a distinction between less
severe and more severe impacts. Finally, a critical analysis of the NWS and SHAVE data collection meth-
odologies was completed and challenges for future work were identified.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Flash floods are rapid surface water responses to rainfall from
intense thunderstorms or a sudden release of water from a dam
or ice jam. Inundation occurs over normally dry land from within
minutes to a few hours of the causative rainfall and can have dev-
astating impacts on lives and infrastructure (Hong et al., 2012). In
recent years, there has been an increase in flash flood impacts, even
as our ability to forecast events and warn areas at risk increases
(Montz and Gruntfest, 2002). For instance, in the US, flash flooding
is considered one of the deadliest among weather-related hazards
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(Ashley and Ashley, 2008). This increase results from a combina-
tion of extreme events and the exposure of vulnerable populations.
In addition to the need for understanding physical processes of
flash floods, it has become more important to analyze the human
impact of such disasters (World Bank, 2010). Efforts have been
made on the side of hydrometeorological sciences to collect data
on rainfall–runoff processes and spatio-temporal patterns of rain-
fall and runoff associated with flash floods. Current flood datasets
include measurements from in situ stream gauges and acoustic
Doppler profilers (Simpson and Oltmann, 1993), remote sensing
of water surface extents (Brakenridge et al., 2005), post-event field
investigations (Gaume and Borga, 2008) or rainfall–runoff
modeling.

Social impacts from flash floods are also documented, as some
studies and datasets differentiate rapid-onset flash flooding from
slow-onset riverine flooding and other types of flooding. But those
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studies, which may be driven by various research questions, differ
in content, spatial and temporal extent as well as comprehensive-
ness. Case studies often adopt a qualitative approach in an attempt
to understand the root causes of a specific catastrophe. For in-
stance, several case studies focus on human vulnerability through
the study of loss of life circumstances (Duclos et al., 1991; Gruntfest,
1977; Ruin et al., 2008; Staes et al., 1994; Vinet et al., 2011). In a
similar attempt to characterize human vulnerability factors,
several researchers also investigated national and international
databases compiled from newspapers, historical accounts, govern-
ment and scientific reports (French et al., 1983; Coates, 1999;
Antoine et al., 2001; Few et al., 2004; Jonkman, 2005; Jonkman
and Kelman, 2005; Sharif et al., 2010; Zahran et al., 2008). It is
noteworthy that few of the existing large-scale databases readily
accommodate both quantitative and qualitative analysis. The level
of details associated with the event and impacts description is of-
ten conditioned by the territorial scale (commune, county, region,
state, and nation) at which the data are collected (and sometimes
subsequently lost). Similarly, reported events are often the ones
classified as ‘‘catastrophic’’ based on criteria such as the number
of fatalities, affected people, emergency declaration and call for
international assistance. The criteria and classification used are
not always consistent across databases. Therefore it is often
difficult to use these various datasets in a complementary and
seamless fashion.

The impacts of flash floods are diverse. Flooding may take the
form of runoff, street/urban flooding, streams flowing out of their
banks, or even mud/debris flow. Flash flood impacts are a bit differ-
ent than other natural hazards (like hail or tornadoes) in that they
are more strongly controlled by surface properties, infrastructure,
and spatial and temporal distribution of societal exposure. All of
these specific aspects require interdisciplinary efforts, integrating
natural and human sciences to improve the understanding and
ultimately, the prediction of flash floods. Therefore this type of
event requires different tools, models and data collection strategies
than those used for forecasting on larger, well-instrumented
basins.

Few datasets include detailed information about flash flood
events and/or their related impacts. In Europe a recent initiative
supported by the HYDRATE (HYdrometeorological Data Resources
And Technologies for Effective flash flood forecasting) project com-
piled detailed hydrometeorological data on flash flood events that
have occurred since 1994 (Gaume et al., 2009). In the USA, the
Storm Events database, a product of NOAA’s National Weather Ser-
vice consists of both meteorological and impact data collected by
local forecast offices through spotter reports. The NWS dataset
contains detailed narratives about events and often supplies dam-
age estimates, but the times and spatial extents of the events can
be imprecise, as the latter are designated with forecaster-drawn
bounding polygons.

To address the lack of high-resolution datasets over vast regions
for both flash flood forecasting verification and research on flash
flood impacts, Gourley et al. (2010) proposed a near-real-time
public-based survey within the Severe Hazards Analysis and
Verification Experiment (SHAVE). This was a student-led and
student-run experiment conducted at the National Severe Storms
Laboratory (NSSL) in Norman, Oklahoma during the summer
months from 2008 to 2010. The magnitude and instances of
respondent-reported flash flooding has been used to evaluate
new, gridded tools used operationally in the NWS for flash flood
monitoring and prediction (Gourley et al., 2012a, in preparation-
b). While the original intent of SHAVE was to collect high-resolution
observations to evaluate these radar-based forecasting tools, it be-
came clear that the details collected during the experiment were
well suited for studying the specific impacts and characteristics
of flash floods in a more general, comprehensive way. To date,
the specific impacts of flash flooding collected during SHAVE have
yet to be studied or utilized in any way.

This paper takes a first step in addressing the need to consider
both flash flood physical characteristics and impacts by creating
and testing the coherence of an impact-focused database based
on two pre-existing public and expert-based survey datasets: the
Severe Hazards Analysis and Verification Experiment (SHAVE)
and the National Weather Service (NWS) Storm Data. By supple-
menting SHAVE and NWS datasets with socially and spatially rele-
vant information, we aim at improving future forecast ability to
predict the amount and types of impacts. The paper describes the
dataset-enhancement process allowing to classify and rank the
impacts from the least to the most severe. We also verify the
coherence and relevance of the impact-focused SHAVE dataset
via cross-tabulation analysis of reported variables and GIS-
sampled spatial characteristics. Finally, we incorporate the
enhanced impact-focused datasets, developed in this study, to test
the capabilities of flash flood forecasting tools in predicting differ-
ent categories of impacts for two extreme cases of flash flooding in
Oklahoma.

The paper is organized as follows. Section 2 introduces the flash
flood reports datasets and their impact-focused enhancement. Sec-
tion 3 presents the cross-tabulation analysis of SHAVE impacts. In
Section 4, two extreme cases of flash flooding in Oklahoma are
used to test the capabilities of forecasting tools in predicting im-
pacts. Section 5 reviews SHAVE and NWS data collection method-
ology and proposes ways for improvements. Finally, a summary of
results and concluding remarks are given in Section 6.
2. Flash flood datasets

The SHAVE and NWS datasets are employed in this study to
characterize flash flooding impacts. Both datasets are built from
personal reports. NWS forecasters collect Storm Data reports from
trained spotters, emergency management personnel, and the pub-
lic. The SHAVE data are obtained from the general public through
responses to a questionnaire. Both datasets are obtained shortly
after (generally within hours up to 1 day) of the causative event.
While personal accounts inherently introduce subjectivity, uncer-
tainty, and occasional embellishments, they are presently the best
information available for determining flash flood impacts. These
reports have been combined into a consistent database available
for display in Google Earth™ and for analysis using geographical
information system tools. The database, described in more detail
in Gourley et al. (in preparation-c), is freely available to the public.
2.1. NWS reports

The NWS Storm Data dataset contains flash flood reports across
the entire USA. Local NWS forecast offices collect reports through-
out the year and store them either as latitude/longitude points
(from 2006 to 2007) or polygons (from 2007 to present). In total,
15,999 reports of flash floods have been gathered from 2006 to
2010, over the whole US territory (see Fig. 1). These reports are
meant to be comprehensive for all flash flooding events occurring
within each of the 122 local forecast offices’ areas of responsibility.
The principal aim of this dataset is to verify NWS flash flood warn-
ings that have been issued by the local forecast offices. The sam-
pling method is primarily based on calling of trained spotters,
local law enforcement, and emergency management officials with-
in the warned areas. Then forecasters define polygons (formerly,
points) with as many as eight vertices that delineate the regions
that are suspected of being affected by flash floods. Information
about event timing, fatalities, and injuries or damages is also gath-
ered. For larger events, damages are estimated (in US dollars) and



Fig. 1. Spatial coverage of SHAVE flash flood observations and NWS flash flood event polygons from 2008 to 2010.
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provided in the report. Lastly, forecasters often include lengthy
narratives about the flood event and the meteorological context
causing the event.

The main advantage of this dataset is that reports are collected
throughout the year and across the entire US. Moreover, the per-
sonnel providing the reports are very familiar with their area of
responsibility so they can provide immediate quality control of re-
ports. And the reporting is often part of their job requirement.
Thus, a majority of the reports are quite reliable, although some re-
ports include information obtained from newspaper articles and
the general public. Nevertheless, the NWS dataset does not include
reports of no flooding in warned regions (i.e. false alarms), and of-
ten does not report flood events that occurred without warning
(i.e. missed events) or floods that happened in more sparsely
populated areas where few people could have witnessed them
(Gourley et al., 2010). Because reports mostly come from local offi-
cials they are somehow biased toward focusing on urban features,
especially road disruptions that impact city functions. Prior to
2007, the point-based reports often represented flash flooding
somewhere within a much larger political county. Nowadays, the
reports are defined by bounding polygons but still have large
uncertainties in their spatial accuracy. Also, information about
event timing has poor accuracy, as the meteorological event start/
end times are often taken as flood event timing. This lack of accu-
racy encumbers an analysis of the flash flood onset and evolution.

2.2. SHAVE reports

The SHAVE database was set up at the National Severe Storms
Laboratory in Norman, OK (Gourley et al., 2010) and includes flash
flood reports for the entire US from 2008 to 2010. Undergraduate
students collected reports using landline telephone surveys to poll
the general public, based on their residential address, during the
summer months (June through August). This dataset is point-based
and was originally designed to complement hail observational
data. Subsequently, wind damage, tornadoes and flash flood
reports were added to the experiment, in order to create higher-
resolution datasets for model verification. The flash flood sampling
method is storm-targeted for flash floods rather than larger scale,
fluvial floods (with basin areas >300 km2). Reports were classified
in Gourley et al. (2010) as null (i.e., no impact), minor, or severe
events, using the following information collected through the
questionnaire: flood type, water movement, water depth and ex-
tent, and occurrence of evacuation/rescue and flood frequency.
Localization and timing are included as well as textual comments
about the flood event.

Compared to the NWS dataset, the main attributes of the
SHAVE data are its higher spatial resolution (denser point sam-
pling) and an estimation of the event’s spatial extension and
magnitude (reports range from no impact to severe for each
event) based on responder’s answers. Moreover, additional infor-
mation about the characteristics of the event (i.e., flood type,
depth, extent, frequency, and textual comments) is included, as
well as, reports of no flooding in warned regions (i.e., false
alarms) and flooding in unwarned areas (i.e., missed events).
However, we acknowledge that this mode of data acquisition
based on the collation of public perceptions of on-going environ-
mental conditions through surveys may introduce uncertainty
and perhaps bias, a topic we will revisit in the last section of
the paper.
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2.3. Development of impact-focused datasets

Contextual comments and information already included in
SHAVE and NWS flash flood reports were used to develop a com-
prehensive flash flood impact typology. It includes information
grouped using: (1) multiple fields originally included in the data-
sets, for instance ‘flood type’, ‘evacuation’, ‘rescue’ (from SHAVE)
and ‘fatalities’, ‘injuries’ (from NWS), and (2) textual comments
(i.e., flood event narrative and meteorological event description).
Ten different impact categories are created from SHAVE (Fig. 2).
These impact classes are subjectively ranked from the least to
the most severe, based on a priori judgment: ‘no impact’ (=SHAVE
null report), ‘other’ (unclassified or unknown impact), ‘overflow’
(streams out of their banks), ‘green lands’ (flooded cropland, pas-
ture, yard or grassland), ‘street/road flooding’, ‘road closure’ (roads
closed by the authorities, or impassible), ‘inundation’ (floodwaters
in an above-ground residence), ‘evacuation’, ‘stranded cars’ (moved
by floodwaters, stalled in ditches) and finally, ‘rescues/fatalities/
injuries’.

For NWS, no ‘null report’ is included, but the first categories are
similar to SHAVE (‘overflow’, ‘green lands’, ‘street/road flooding’,
‘road closure’, ‘inundation’ and ‘stranded cars’). Because not enough
information was available about evacuations to create a single cat-
egory, it was grouped into a wider, most severe class: ‘evacuation/
rescue/fatalities/injuries’. Since more than one impact may occur for
a single flash flood report, three impact fields were created in order
to keep record of the first, second and third most severe impacts.
With this system, multi-impact reports can be handled.

3. Are SHAVE data reliable even when based on a public survey?

Based on the aforementioned impact typology, we now evaluate
the coherence and relevance of the SHAVE impact-focused dataset.
To accomplish this task, a cross tabulation analysis has been set up,
where impact classes are crossed with interviewees’ perceptions of
the flood event characteristics and with spatial raster maps using
GIS.

3.1. Selection and sampling of attributes to be crossed with impact
classes

Information about interviewees’ perceptions of flash flood char-
acteristics is readily available for each report in the SHAVE dataset,
herein referred to as ‘‘perceived attributes’’, and includes water
movement, depth and flood frequency. In addition, attributes were
added to the dataset by sampling raster data. These SHAVE-
independent variables, called ‘‘spatial attributes’’ were retrieved
Fig. 2. SHAVE impact categories ranked by severity and their corresponding
symbology.
by point sampling, which assigns the pixel value located right un-
der each SHAVE report. In the case of multiple flash flood impacts,
the second and third most severe impacts were copied as addi-
tional report points in order to maximize the data sample. Spatial
attributes added to the database are land use, population density,
and drainage area (see Table 1 for a presentation of the attributes).
Land use is extracted from the USGS National Land Cover Database
2006 raster map at a spatial resolution of 30 m (Fry et al., 2011)
and population density distribution from the US 2000 census grid
at a 1 km2 grid cell resolution (Owen and Gallo, 2000). The drain-
age area raster is computed from the USGS global elevation model
GMTED2010, at a resolution of 7.5 arc sec (Danielson and Gesch,
2011) using the r.watershed algorithm and the Single Flow Direc-
tion (SFD) method (Ehlschlaeger, 1989). In this drainage area
raster, the absolute value of each cell is the number of upstream
cells that drain to it. This value was then converted into square
kilometers by knowing the area of each pixel. For this attribute, a
sampling cluster was used to select the maximum value of flow
accumulation within a 300 m radius around each SHAVE report.
The aim is to sample the nearest ‘stream segment’ within 300 m
around the interviewee’s location. This arbitrary 300-m buffer
was chosen to represent the mean distance to be sighted by the
average person from their home.

3.2. Attributes distribution and categorization

Because the majority of attributes (i.e., ‘water movement’, ‘return
period’ and ‘land use’) describing flash flood impacts consists of cat-
egorized variables, a cross tabulation approach was chosen to ana-
lyze the relationship between these variables and impact classes.
The continuous attributes (i.e., ‘water depth’, ‘population density’,
‘local upslope’ and ‘drainage area’) were categorized as follows
(Table 2):

– The water depth perceived attribute was split into three catego-
ries, according to the interviewees’ perception: 610 cm (corre-
sponding to ankle-deep water and shallower), 10–30 cm
(between ankle-deep and knee-deep water) and >30 cm (above
knee-deep water).

– The original SHAVE ‘flood frequency’ field contained six catego-
ries. It has been simplified into three new categories of per-
ceived return periods: ‘more often than every year’, ‘every
year to every ten years’ and ‘never seen before’.

– The twenty NLCD2006 land cover classes originally contained in
the raster layer were grouped to make five global categories.
These are ‘natural vegetation’ (including forest, shrubland and
herbaceous land covers), ‘pasture/crops’ (planted and cultivated
lands) and three levels of urbanized covers: ‘developed-open
space’ (containing <20% of impervious surface), ‘developed-low
intensity’ (20–49% impervious surface) and ‘developed-high
intensity’ (>49% impervious surface). This classification allows
a gradation from natural to more anthropogenic areas.

– Population density were divided into four classes, in order to
account for sparsely-populated (64 inhab./km2), low density
(4–70 inhab./km2), high density (70–500 inhab./km2) and very
high density areas (>500 inhab./km2).

– The ‘drainage area’ distribution was split into five classes. The
first classes were created using quantiles: 60.25 km2, 0.25–
0.75 km2 and 0.75–2 km2. The last two classes were chosen to
make the distinction between drainage areas below and above
20 km2: 2–20 km2 and >20 km2. This limit was chosen in
accordance with Ruin et al. (2008), which studied the hydro-
meteorological circumstances of fatal accidents during the
2002 flash flood event in the Gard region of France. The study
found that fatal accidents in catchments <20 km2 occurred



Table 1
Presentation and statistical description of the perceived and spatial attributes.

Attributes presentation and statistics

Variable Perceived attributes Spatial attributes

Water movement Water depth Flood frequency Population density Land use Drainage area

Unit Three categories (meters) Six categories (inhabitant/km2) Five categories (km2)
Resolution Point-based Point-based Point-based 1 km raster 30 m raster 200 m raster
Source SHAVE SHAVE SHAVE US 2000 census USGS NLCD2006 UGS GMTED2010
Sample size n = 1907 n = 2328 n = 2047 n = 2548 n = 2682 n = 2697
Min 0.00 0.0 0.036
Max 6.10 8138.6 65586.08
Average 0.40 198.2 142.10
Std dev. 0.56 516.0 2123.22
Skewness 3.8 5.5 21.21
Kurtosis 24.1 48.4 502.91

Table 2
Categorization of impacts and attributes.

Attributes categorization

Impacts Perceived attributes Spatial attributes

SHAVE impacts Water movement Water depth (meters) Flood frequency Pop. density (inhabitant/km2) Land use Drainage area (km2)

Overflow Moving 60.1 61 year 64 Natural vegetation 60.25
n = 471 n = 1131 n = 815 n = 1440 n = 1017 n = 359 n = 669
(18.5%) (44.4%) (32.0%) (56.5%) (39.9%) (13.4%) (24.8%)
Greenlands Standing [0.1–0.3] [10–30 years] [4–70] Pasture/crops [0.25–0.75]
n = 1019 n = 776 n = 608 n = 295 n = 866 n = 642 n = 672
(40.0%) (30.5%) (23.9%) (11.6%) (34.0%) (24.0%) (24.9%)
Road Flooding -unknown- >0.3 Never seen [70–500] Developed – open space [0.75–2]
n = 237 n = 641 n = 905 n = 312 n = 339 n = 897 n = 455
(9.3%) (25.1%) (35.5%) (12.2) (13.3%) (33.5%) (16.9%)
Road closure -unknown- -unknown- >500 Developed – low intensity [2–20]
n = 291 n = 220 n = 501 n = 326 n = 583 n = 577
(11.4%) (8.6%) (19.7) (12.8%) (21.7%) (21.4%)
Inundation Developed – high intensity >20
n = 388 n = 201 n = 324
(15.2%) (7.5%) (12.0%)
Evacuation
n = 71
(2.8%)
Stranded cars
n = 40
(1.6%)
Rescue
n = 31
(1.2%)
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mainly outside in the open to middle aged males (43 years old, on
average); whereas in larger catchments (>1000 km2), fatalities
occurred at home and concerned older people (average age of 76).

3.3. Results and discussion of the cross tabulation analysis

To measure the degree of independence and relationship
strength between each impact type and spatial or perceived attri-
butes, we performed the Pearson’s Chi-squared and Cramer’s V
tests. The Pearson’s Chi-squared is a test for independence (i.e.,
independence between tested variables is the null hypothesis,
H0). If H0 is rejected (i.e., when the Chi-squared asymptotic signif-
icance value is below the significance level taking alpha = 0.05),
there is a statistically significant relationship between the vari-
ables. The Cramer’s V test evaluates the strength of a relationship
between variables. High Cramer’s V values indicate strong relation-
ships, with a maximum of 1 and a minimum of 0. These statistics
are presented for each cross-tabulation (Table 3). The Chi-squared
values indicate highly significant relationships between impacts
and attributes classes, whereas the Cramer’s V values are relatively
low, indicating moderate to weak relationships, especially for
‘drainage area’ (Cramer’s V < 0.1). The first attribute to be crossed
with flash flood impacts is ‘water depth’ (Fig. 3), a perceived char-
acteristic collected through SHAVE. This flood description, com-
bined with ‘water movement’, will provide a first evaluation for
the severity ranking of the SHAVE impact categories.

Significant positive deviations (above 5%) indicate that the ‘over-
flow’, ‘road closure’, ‘evacuation’, ‘stranded cars’ and ‘rescue/fatalities’
impacts are mostly related to high waters (the >30 cm bin). Addi-
tionally, cross-tabulation results from the ‘water movement’ per-
ceived attribute show that all of the aforementioned categories are
also associated with ‘moving water’. This combination of running,
high waters represents a severe hazard and is thus consistent with
its association to the three highest impacts categories (‘evacuation’,
‘stranded cars’ and ‘rescue/fatalities’). It also makes sense in the con-
text of ‘overflow’ (rivers out of their banks) and ‘road closure’ (which
is often associated with overflows on nearby roads or low-water
crossings). On the other hand, significant negative deviations
indicate that ‘green lands’ and ‘inundation’ are not related to high
floodwaters. Moreover, they are associated to ‘standing water’. Final-
ly, the ‘street/road flooding’ impact deviates most in the intermediate
water depth bin (10–30 cm) and is strongly unassociated with
shallow waters (<10 cm). This impact is also linked to ‘moving water’,
and thus, may indicate a dangerous runoff situation.



Table 3
Statistical tests (Cramer’s V and Pearson’s Chi2 2-sided asymptotic significance [p-value]) for each impact type versus attribute cross-tabulation.

SHAVE impacts, VS: Chi-squared two-sided asymptotic value
(alpha = 0.05) If <0.01: highly significant

Cramer’s V

Perceived attributes Water movement 0.000 0.22
Water depth 0.000 0.18
Flood frequency 0.000 0.15

Spatial attributes Land use 0.000 0.14
Population density 0.000 0.19
Drainage area 0.000 0.08

Fig. 3. Results of the crossing between SHAVE impacts and flood water depth: bar chart representing deviation from average (%).
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‘Flood frequency’ estimated by SHAVE interviewees is the next
perceived attribute to be crossed with SHAVE flash flood impacts
(Fig. 4). Recall the respondents were asked during SHAVE to pro-
vide an estimate on the frequency (in years) at which the reported
event occurs. ‘Overflow’ impacts are most significantly associated
with 1–10-year return periods (>5% deviation), but not to short re-
turn periods (61 year), whereas, ‘green land’ and ‘street/road’ are
mostly linked to such frequent events. Note that ‘road closure’
and ‘inundation’ show no significant deviation from the average
(<5%), indicating that interviewees equally associate these impacts
to frequent and rare events. Finally, ‘evacuation’ and ‘rescue’ are
mostly associated with rare events, whereas, ‘stranded cars’ shows
positive deviations towards rare event, but also for the most fre-
Fig. 4. Results of the crossing between SHAVE impacts and flood re
quent events, which is quite contradictory. It may be due to peo-
ple’s perceptions, knowledge, or age. Results must also be taken
cautiously because of the small sample size for severe impacts.
Nevertheless, they show that people are moderately able to evalu-
ate flood frequency, indicating a general tendency showing that
more severe the impact, the rarer the event.

The next cross tabulation analysis concerns the independent,
GIS-sampled parameters. SHAVE impacts crossed with population
density classes (Fig. 5) presents clear trends for almost every im-
pact category. Going from the lowest to the highest population
density bins, deviations evolve progressively from minimum to
maximum values. ‘Overflow’ and ‘green land’ classes show clear
positive deviations towards the lowest populations densities
turn period: bar chart representing deviation from average (%).



Fig. 5. Results of the crossing between SHAVE impacts and population density: bar chart representing deviation from average (%).
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(64 inhab./km2). This association with sparsely populated areas
agrees with the ‘non-urban’ aspect of these impacts and will be
confirmed by the following crossing with land use categories. On
the other hand, ‘street/road’ and ‘road closure’ show weakly nega-
tive deviations in the lowest population density class. This result
suggests these impacts are dependent on road networks, which
tend to be more ubiquitous in populated areas as opposed to spar-
sely inhabited zones. ‘Inundation’, ‘evacuation’ and ‘stranded cars’
categories show very strong association with densely populated
areas (>500 inhab./km2), confirming that such impacts are most
likely to occur in developed areas. Finally, ‘rescue/fatalities’ is
strongly unassociated with the least dense category but is strongly
related to the second population density bin (4–70 inhab./km2),
while we would have expected a signal towards very high densities.
This association is very interesting, as it shows that our most severe
impact category does not necessarily occur in the most heavily
populated areas. Again, some caution is warranted in interpreting
results in the most extreme categories due to the small sample
size.

Land use is the second GIS-sampled characteristic to be crossed
with SHAVE impacts (Fig. 6). The deviation chart also shows clear
trends, from natural to more and more developed areas. ‘Overflow’
Fig. 6. Results of the crossing between SHAVE impacts and lan
and ‘green land’ have weak deviations but show a slight tendency
towards natural, rural and open space land cover classes, confirm-
ing the previous association with sparsely populated regions. Also,
the strongest deviation for the ‘green land’ category is with ‘pas-
ture/crops’, which correctly matches our classification. ‘Street/roads’
does not show strong deviations either, but this impact class may
have combined events that occurred in both urban (streets) and
rural zones (roads, highways). It is intriguing that the most severe
impacts (i.e. ‘road closure’, ‘inundation’, ‘evacuation’, ‘rescue/fatali-
ties’ and especially ‘stranded cars’) are all strongly associated with
the most developed areas, with high percentages of impervious
surfaces, while they are strongly unassociated with natural and
less developed classes. These results indicate that these impacts,
which by definition should be linked to urbanized areas, were cor-
rectly classified. But most of all, it shows that such a land cover clas-
sification, at high resolution, can be a useful tool to define exposure to
flash flood, and ultimately, help to predict the locations of such
impacts. Moreover, note that the most severe impact, ‘rescue/fatal-
ities’, which was not associated to the highest population density
bins, is here related to the most developed land use class. This
contradiction is certainly due to the difference of spatial resolution
between grids of population density and land use. For instance, a
d use: bar chart representing deviation from average (%).
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rescue can occur on a road (represented by a line of ‘highly devel-
oped’ 30-m land use grid-cells), but situated in a sparsely popu-
lated area (inside a 1-km population density grid-cell).

The last GIS-sampled attribute crossed with impacts classes is
the maximum flow accumulation value (‘drainage area’), sampled
within a radius of 300 m of the SHAVE report (Fig. 7). In general,
the chart shows weaker deviations than for the previous ones (re-
call the low Cramer’s V value), especially for ‘green land’, ‘street/
roads and road closure’. But for the other impacts, significant trends
can still be seen. First, the ‘overflow’ impact (i.e., rivers out of their
banks) is mostly associated with the larger drainage bin (>20 km2).
This is a consistent result, as streams are, by definition, the repre-
sentation of flow convergence. Secondly, ‘inundation’ shows a posi-
tive signal towards smaller drainage areas (60.75 km2) and a
negative signal for higher flow accumulations (>2 km2). This result
is quite contradictory, as we would expect inundations (previously
associated with standing waters) to be related to larger flow accu-
mulations. This may be due more to poor infiltration in urban
areas, as inundations are associated with highly developed, imper-
vious areas. Finally, the three most severe impacts (‘evacuation’,
‘stranded cars’ and ‘rescue/fatalities’) have positive deviation in
drainage areas between 0.75 and 20 km2.
4. Example of use of NWS and SHAVE impact-focused dataset:
two case studies

Launched in the mid-1980s, the operational flash flood predic-
tion tools in the US are radar-based and rely on the concept of Flash
Flood Guidance (FFG) (Georgakakos, 1986). Alternative approaches
to FFG have been recently developed using spatially-distributed
land surface and soil characteristics maps (the Gridded FFG, herein
called GFFG), as well as, distributed hydrological models. In this
section, the impact-classified NWS and SHAVE datasets will be
used to evaluate the ability of three of these prediction tools
(FFG, GFFG and the Distributed Hydrological Model – Threshold
Frequency (DHM-TF)) (Reed et al., 2007) to predict flash flood im-
pacts for two extreme cases of flash flooding in Oklahoma, USA.
4.1. Flash Flood Guidance (FFG)

The concept of Flash Flood Guidance (FFG) is the threshold rainfall
over nominal accumulation periods of 1, 3, and 6 h (and sometimes
Fig. 7. Results of the crossing between SHAVE impacts and lan
12 and 24 h) required to initiate flooding in small streams that re-
spond to rainfall within a few hours. In other words, FFG is the ba-
sin-averaged rainfall required over a basin to produce flooding at
its outlet. One to three times a day, FFG is derived using a hydrologic
model taking into account initial soil moisture and stream states.
These values, when overlaid with radar’s Quantitative Precipitation
Estimates (QPEs) or forecasts, are used by forecasters to issue flash
flood warnings when observed or forecast rainfall rates exceed the
thresholds. FFG is computed in two steps. First, the threshold runoff
(L) required to cause flooding (bankfull conditions) at the basin outlet
is computed. In the NWS, this value is derived by dividing the esti-
mated 2-years return period flow (L3/T) by the unit hydrograph peak
flow (L2/T). Threshold runoff values are computed once offline at a
resolution down to 5 km2 basins and are considered static.

Then, a lumped-parameter hydrological model is run under dif-
fering basin-averaged rainfall scenarios to yield rainfall–runoff
curves over 1-, 3-, and 6-h accumulation periods, given initial soil
moisture and stream states. The method employed in the NWS
uses the Sacramento Soil Moisture Accounting model (SAC-SMA)
and includes contributing processes such as snowmelt, intercep-
tion, infiltration, interflow, soil water storage and evapotranspira-
tion. These rainfall–runoff curves are then used in reverse to look
up the rainfall rates that correspond to the static threshold runoff
values; this is FFG (Gourley et al., in preparation-b). Because FFG
values are computed at basin scale, a recent development has been
made to create a tool at higher spatial resolution: the Gridded FFG.
4.2. Gridded Flash Flood Guidance (GFFG)

The general GFFG methodology, proposed by Schmidt et al.
(2007), follows that of FFG in that static values of threshold-runoff
are first derived to estimate bankfull discharge and are subse-
quently used to derive rainfall thresholds, which change in re-
sponse to modeled soil saturation (Gourley et al., in preparation-
b). The difference here is that threshold-runoff values and
rainfall–runoff curves are computed at a grid cell scale, taking into
account variability in the land surface and soil types, as well as
slope. The nominal resolution of GFFG products is 4 km. Note that
GFFG is progressively replacing FFG as an operational tool in
several US River Forecast Centers (RFCs), but FFG is still in use
for some RFCs. For this reason, FFG and GFFG products are hardly
available simultaneously for a particular area.
d use: bar chart representing deviation from average (%).
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4.3. Distributed Hydrological Model – Threshold Frequency (DHM-TF)

The Distributed Hydrological Model – Threshold Frequency
(DHM-TF) deviates from FFG in that it uses observed or forecast
rainfall as a direct forcing to the hydrological model, rather than
determining the rainfall thresholds in scenario mode (Gourley
et al., in preparation-b). The method consists of running a distrib-
uted hydrologic model at each grid point using historical rainfall
historic data; this allows simulated runoff to be assigned to grid
cells where discharge observations are not available. Then, a flood
frequency analysis (assuming a log-Pearson Type III distribution) is
used to compute flows that correspond to return periods of 1, 2,
5 years, etc. In forecast mode, DHM-TF is forced with real-time,
radar-based rainfall or model forecast rainfall. Exceedance of sim-
ulated flows over the threshold return period flows (in this study, a
2-years return period flow) is the basis for alerting on an impend-
ing flash flood (Gourley et al., in preparation-b).

4.4. Results

In this analysis, two flash flood case studies (considered ex-
treme events) were chosen, for which at least two of the three fore-
casting tools were available: the flash floods caused by Tropical
Storm (TS) Erin over the state of Oklahoma in 2007, and the Okla-
homa City flash flood event of 2010. These events occurred at dif-
ferent spatio-temporal scales (Fig. 8). The first flash flood case
study was caused by the remains of Tropical Storm Erin, which
crossed Oklahoma from west to east from 18 to 20 August 2007.
Rainfall rates of over 76 mm/h were common, with significant flash
flooding reported in numerous counties. Rainfall amounts ex-
ceeded 127 mm over a large area, with some locations receiving
203–254 mm. The second flash flood case was at a smaller
Fig. 8. Presentation of the TS Erin and Oklahoma City case studies: maps of observed m
precip/.
spatio-temporal scale. It was mainly an urban event, occurring
14 June 2010 over the Oklahoma City metro area. The thunder-
storm lasted about 7 h and rainfall rates averaged 25–50 mm/h,
with some thunderstorm bands producing rates near 76 mm/h. A
total of 127–228 mm was reported over the area, with up to
305 mm over the north-central portion of Oklahoma City.

One-hour accumulation periods for FFG and GFFG were chosen,
rather than 3- or 6-h, as they showed better skill compared to flash
flood observations (see Gourley et al., 2012a). The hourly FFG,
GFFG, and DHM-TF products were collected over the whole Arkan-
sas-Red River Basin and over a timeframe of 8 h prior to the mete-
orological event to 2 h after. Because FFG and GFFG represent
rainfall thresholds triggering flash flooding, these values can be
directly compared with precipitation estimates by computing
ratios. As soon as the Rainfall-to-Guidance ratio is equal to or high-
er than one, forecasters at local NWS offices consider issuing flash
flood warnings. QPEs were taken from the hourly multi-sensor
Stage IV product, a mosaic of US radar-based rainfall rates and rain
gauges (for more information, see http://www.emc.ncep.noaa.gov/
mmb/ylin/pcpanl/stage4/). These QPE values were then used to
calculate ratios of QPE-to-FFG and QPE-to-GFFG for every hour in
the event. Then, in order to map the entire flash flood event, the
maximum values of these hourly ratios and DHM-TF return periods
grids were extracted to create a single grid of maximum values.
Finally, NWS- and SHAVE-enhanced impact reports developed
from this study were overlain on the gridded forecast products to
determine the association between the forecast and the impact.
To take into account the uncertainty of impact location with the
reports, maximum ratios were searched within 7.5-km radii sur-
rounding each impact for the TS Erin case and 1.5-km radii for
the Oklahoma City case. Different search radii correspond to the
NWS reports that were used for the TS Erin case and higher-density
onthly precipitation. Source: National Weather Service, http://water.weather.gov/

http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://water.weather.gov/precip/
http://water.weather.gov/precip/


Table 4
Forecasting contingency table.

Forecast No forecast

Observed Hit Miss
Not observed False alarm Correct negative
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SHAVE reports for the Oklahoma City case. Recall that bankfull
conditions are expected when QPE-to-FFG and QPE-to-GFFG ratios
exceed 1, or a DHM-TF return period exceeds 2 years. These limits
were used to define if the tools forecasted a flash flood event in or-
der to populate contingency tables (Table 4).

Three statistics were then computed from the hits, misses, and
false alarms (only available with the SHAVE reports in the Okla-
homa City case) in each of the contingency tables. The Probability
Of Detection (POD) describes the fraction of observed flash floods
that were correctly forecasted:

POD ¼ hits=ðhitsþmissesÞ ð1Þ

A POD of 1 indicates all flash floods were correctly forecasted
while 0 indicates the forecast tools detected no flash floods. The
False Alarm Ratio (FAR) describes the fraction of forecasted events
that were not associated with observed events:

FAR ¼ false alarms=ðhitsþ false alarmsÞ ð2Þ

Similar to POD, FAR ranges from 0 to 1, with zero indicating no
forecasted events were unobserved and 1 indicating all forecasted
flash floods were not associated with an observed event. The Crit-
ical Success Index (CSI) combines both aspects of POD and FAR, and
thus, describes the skill of a forecast system:

CSI ¼ hits=ðhitsþmissesþ false alarmsÞ ð3Þ

CSI ranges from 0, indicating no skill, to 1, for perfect skill.

4.4.1. Tropical Storm Erin
For the TS Erin case, only NWS point-based impacts were avail-

able to evaluate the forecast tools. Three maps compare impacts
Fig. 9. NWS flash flood impacts and maximum
with hourly maximum QPE-to-FFG (Fig. 9), QPE-to-GFFG ratios
(Fig. 10), and hourly maximum DHM-TF return periods (Fig. 11).
A symbology was created for each impact (see Fig. 2). Furthermore,
to better illustrate the multi-impact aspect, the most severe im-
pacts are symbolized by white squares and the second most severe
by white circles. In each map, property damage estimations are la-
beled for each report, and primary roads and major streams are
also included as overlays. A first analysis was done on a YES/NO
event basis by studying the forecasting tool maps and computing
skill statistics. From Figs. 9–11, we can see that all flash flood fore-
casting tools correctly located the global area impacted by the flash
flood. Note that GFFG identified the smaller extent of forecast
flooding (ratios > 1) compared to the other two tools, yet it is still
missing a few impacts. Although FFG and DHM-TF may detect al-
most every impact, they also forecast large areas where no impacts
were reported by the NWS. This could mean that either: (1) the
tools are overestimating flash flood impacted zones, (2) these
zones were impacted but no NWS report was collected, or (3) these
zones experienced flash flooding but there was little vulnerability
or exposure, so no impact. Because the NWS dataset does not in-
clude reports of no flooding, the POD was the only skill statistic
that we computed (see Table 5). The tool with the best detection
skill was DHM-TF, followed by FFG, and then, GFFG. However,
these high detection skills may also be associated with high FAR
values, which unfortunately cannot be estimated. It should also
be noted that because ratios were sampled by taking the maximum
within 7.5-km of the impact, it artificially increases the POD.

A second analysis was done by comparing sample ratio values
for each tool as a function of impacts in order to assess the ability
of these tools to distinguish impact categories (Figs. 12–14). Grey
diamonds represent sampled ratio values, black squares are the
average value per impact category, and a vertical line delimits
the forecast of bankfull and non-bankfull conditions (a detected
flash flood or not). It is important to note the very high tool values
for this flash flood case (with average FFG and GFFG ratios up to 2,
and DHM-TF return periods up to 200 years), indicating the tools
confirmed the extreme nature of the TS Erin event. Also, there is
considerable spread in the distribution of values for each impact
1 h QPE-to-FFG ratios for the TS Erin event.



Table 5
Probability Of Detection results for the TS Erin impacts sampling.

Erin event POD

1-h QPE-to-FFG 0.94
1-h QPE-to-GFFG 0.78
DHM-TF 1

Fig. 10. NWS flash flood impacts and maximum 1 h QPE-to-GFFG ratios for the TS Erin event.

Fig. 11. NWS flash flood impacts and maximum DHM-TF return periods for the TS Erin event.
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class (grey diamonds) and small sample sizes (for instance, only
three ‘green land’ impact occurrences). Therefore, these results
must be taken cautiously until new case studies can be included
for future analysis. Nevertheless, these plots confirm that a great
majority of impacts is detected (in the bankfull zone values) by
FFG and DHM-TF, whereas, GFFG shows more undetected impacts
(‘green land’ is not detected at all, but this tendency might be due



Fig. 12. Sampled maximum 1 h QPE-to-FFG ratios as function of impact classes for the TS Erin event.

Fig. 13. Sampled maximum 1 h QPE-to-GFFG ratios as function of impact classes for the TS Erin event.
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to the small sample size). Regarding average ratio values for the
impact classes, there is a general tendency for higher ratio values
being associated to the more severe impacts. This result indicates
that, for this particular case study, all three tools are able to make
a distinction between less severe and more severe impacts.

4.4.2. Oklahoma City event
For this smaller-scale urban event, only SHAVE impacts were

used because they include reports of no impact (white points on
the maps), so that the FAR and CSI can be readily computed. More-
over, NWS reports are represented by polygons in 2010, which was
inconvenient for this study, because they are often the size of the
whole metro area. In this case, we evaluated the 1-h QPE-to-GFFG
ratios (Fig. 15) and DHM-TF return periods (Fig. 16); the FFG meth-
od had been replaced by GFFG at the operational River Forecast
Center by this time and was unavailable. As with the previous case,
skill was first analyzed on a YES/NO event basis (computation of
POD, FAR and CSI). Recall that the sampling of the maximum values
is made within a radius of 1.5 km from the report point due to the
small-scale nature of the event and high-density SHAVE reports.

Maps of enhanced flash flooding impacts versus forecasting
tools show that flash flood forecast patterns correctly match the
global extension of impacts (Figs. 15 and 16). Yet, there are many
forecast grid cells associated with null reports, which seems to
indicate numerous false alarms. Additionally, as the reports are
point-based, the assessment of such false alarms for gridded mod-
els was found to be problematic. For example, when an observed
impact easily validates a forecast pixel, a null report cannot inval-
idate a whole 4 � 4 km forecast pixel, in which impacted zones
may not be sampled by SHAVE point clusters. Moreover, an impact



Fig. 14. Sampled maximum DHM-TF return periods (log scale) as function of impact classes for the TS Erin event.

Fig. 15. SHAVE flash flood impacts and maximum 1-h QPE-to-GFFG ratios for the Oklahoma City event.
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might be located next to the report point, but not seen by the inter-
viewee. Nevertheless, to assess forecasting tools skill on a YES/NO
event basis, POD, FAR and CSI were computed for both tools in
(Table 6). Results show that DHM-TF has the highest POD (1),
but also the highest FAR (0.88). GFFG has the best CSI, with a score
of 0.14, despite a lower POD value (0.86), but it also has a better
FAR (0.85). While the GFFG tool apparently has better skill than
DHM-TF for this particular case, both CSI values are still quite
low. The CSI values also agree with the highest value found by
Gourley et al. (2012a) for the 1-h GFFG tool (0.12) using NWS
reports over the entire Arkansas-Red River Basin from September 1,
2006 to August 22, 2008.



Fig. 16. SHAVE flash flood impacts and maximum DHM-TF return periods for the Oklahoma City event.

Table 6
Probability Of Detection, False Alarm Ratio and Critical Success Index results for the
Oklahoma City impacts sampling.

Oklahoma City event POD FAR CSI

1-h QPE-to-GFFG 0.86 0.85 0.14
DHM-TF 1 0.88 0.12
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5. Flash flood reports: critical analysis and ways of
improvement

What are the strengths and weaknesses of the NWS and SHAVE
observational datasets when it comes to the evaluation of flash flood
forecasting models? How could they be improved? This study high-
lighted remaining challenges for forecast evaluation, in the particu-
lar case of flash flooding, and provides specific recommendations for
improving the data collection methodology in this section.
5.1. Recommendation 1: estimate the timing of sudden events

Both datasets were found to provide poor event timing
estimates. In NWS reports, the meteorological event timing is often
taken as flash flood timing; whereas for SHAVE reports, the general
public might not be able to estimate the event start time (e.g., if it
started overnight) or only give rough estimations. Even worse,
when the timing is unknown, the recorded event start/end time
is simply the time of the phone call, which can be the next day.
Also, because it is a near-real-time poll, the event is often still
ongoing, so the end time is often associated with significant uncer-
tainty. To permit a meaningful temporal analysis, accurate timing
(hourly to minute timescales) associated with the flash flood event
must be recorded, including an estimation of the range of timing
error. If temporal information is not available, an ‘unknown’ cate-
gory needs to be added.

Together with the location, the issue of timing is particularly
important in the case of flash flooding because it allows connecting
environmental circumstances with social activities determining
the level of human exposure to a particular event (Creutin et al.,
2009; Ruin et al., 2008). Unfortunately, this definitely appears as
a weakness of most data collection strategies and new methods
must be developed to address this need. The use of existing traffic
or security cameras could be experimented with as well as the
information provided through social networks (e.g. YouTube
videos, Twitter posts). Therefore a deep understanding of what
those tools could bring, what their limits are, and how they could
be coupled for impact-based database enhancement is needed.

5.2. Recommendation 2: improve the spatial delineation of events

This study showed that neither the NWS event polygons, nor
the SHAVE high-resolution poll-based points were entirely appro-
priate to correctly delineate flash flood patterns to be compared
with gridded forecasts. The current NWS polygons have poor spa-
tial accuracy, even if they were quality controlled and drawn by
professionals familiar with their area of responsibility. While for
SHAVE, even with precisely geolocated reports, events are de-
scribed by the general public, who are most likely untrained to pro-
vide accurate descriptions. Therefore, the described flash flood may
occur from 1 m to a few kilometers around the report point,
depending on people’s perception or knowledge. For instance, peo-
ple living in urban areas might be more aware of their immediate
neighborhood’s flooding, whereas, a farmer may be aware of what
is happening on his entire property, which could represent a much
larger area. Therefore, uncertainty buffers must be considered
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around SHAVE report points. Also, SHAVE and NWS sampling strat-
egies are more storm-targeted rather than having hydrologic rele-
vance. In order to better delineate the diffuse and small-scale
patterns of flash floods, report datasets should target their sam-
pling to probe each small basin (<20 km2), to be sure to report
the state of small streams. This could be made by creating lists of
potential interviewees living close to streams and notifying them
in advance of the possibility to be called about heavy rain (i.e.,
using people as stream gauges). Though, in the particular case of
urban flooding, the laws of natural hydrology are hardly valid, so
the sampling could stay randomly distributed. Lastly, to facilitate
improved spatial analysis of various types of impacts, we recom-
mend the use of GIS tools in the collection of flash flood reports.
Polygons are useful for contouring rainfall patterns, for example,
but flash flood impacts are often more diffuse and may be associ-
ated to difficult-to-contour features such as road networks.

5.3. Recommendation 3: estimate random and systematic errors for
human reports

The SHAVE dataset is largely based on survey responses by the
untrained public. It is quite likely that perceptions influence re-
sponses and introduce bias. In the case of the Oklahoma City event,
student callers fortuitously contacted local emergency manage-
ment officials, and obtained a wealth of high-quality, unbiased
data. But, this was the exception rather than the norm. SHAVE
was initially designed to collect physical data rather than informa-
tion about the interviewees themselves. But, this information is
needed. Future questionnaires should include information about
the interviewee’s age, gender, profession, level of education, in-
come, etc. Indeed, these parameters are likely to influence people’s
perception, and therefore, their description of the event (Brilly and
Polic, 2005). As for spatial representation of their reports, the pub-
lic should be asked how far they can see or how large their prop-
erty bounds are. This information could be used along with GIS
buffers to essentially assign a perimeter associated to each report.

5.4. Recommendation 4: measure false alarms

By collecting only positive reports of flooding, NWS reports do
not readily allow an estimation of false alarms. Also, even though
SHAVE provides reports of no flooding, the analysis of the Okla-
homa City case study showed that this point-based information
was not entirely appropriate to evaluate false alarms for distrib-
uted forecasting tools. Using polygon-delineated null reports
should be more convenient to assess false alarms in the context
of gridded forecasting models. The area of null reports included
in forecast grid cells could then give the metric needed for the
assessment of false alarms.
6. Conclusion

This paper is targeted to researchers and practitioners inter-
ested in deepening their understanding of flash flood impacts. Nev-
ertheless it also provides insights and ideas in advancing ways of
using spatial and temporal datasets for other hydrologic and
non-hydrologic hazards. This study provides an impact classifica-
tion of flash flood report datasets over the United States to evaluate
the ability of US flash flood forecasting tools to predict such cate-
gories of impacts, and subsequently, to identify the problems and
improvements that can be made to these flash flood report meth-
odologies. After presenting the flash flood report datasets (NWS
and SHAVE), the method chosen for impact classification was
described and impact-enhanced datasets were created. SHAVE
impacts were then used in a spatio-contextual analysis, via a cross
tabulation method based on perceived attributes already included
in the SHAVE dataset (‘water movement’, ‘return period’ and ‘water
depth’), as well as, GIS-sampled spatial attributes (‘land use’, ‘popu-
lation density’, ‘local upslope’ and ‘drainage area’). The first result of
this analysis is that associations found using cross tabulation are
consistent with the impact classification. This is true for perceived
attributes already included in SHAVE, as well as for independent
spatial attributes (from 30 m to 1 km resolution) sampled through
GIS. These meaningful results also show that the SHAVE dataset is
a trustworthy tool for flash flood characterization, even if it is
based on public polls. Moreover, by crossing impact categories
with socio-spatial characteristics, this analysis showed first bench-
marks for the use of exposure layers in future flash flood impact
forecasting models: the NLCD2006 land use raster at a spatial res-
olution of 30 m appears to be a simple yet effective tool for flash
flood exposure characterization, and a typical drainage area range
for severe flash flood impacts was identified: 0.75–20 km2.

The second part of this study consisted of an evaluation of three
US flash flood forecasting tools: FFG, GFFG and DHM-TF. After a
brief presentation of the tools, two extreme cases of flash flooding
in Oklahoma (Tropical Storm Erin in 2007 and the Oklahoma City
urban flash flood in 2010) were chosen to evaluate the tools on a
YES/NO-forecast basis (i.e., computing POD, FAR, and CSI), but also
as a function of the impacts. For the YES/NO event analysis, FFG
and DHM-TF detected a great majority of impacts, whereas GFFG
showed more undetected impacts. There was a general tendency
for the more severe impacts to be associated to higher mean excee-
dances over FFG and GFFG. This means that, at least for these par-
ticular case studies, the tools were able to make a distinction
between less severe and more severe impacts. Of course, the anal-
ysis of these two particular cases should be supplemented with a
study of the whole NWS and SHAVE dataset. This would provide
more samples and produce more robust statistics for tool evalua-
tion. It should be noted that these tools were not designed to take
into account flash flood impacts, which are the combination of a
hazard (in this study, quite well described by the tools), but also
exposure and vulnerability. This result demonstrates that these
two terms of the risk equation must be assessed in more detail.

Finally, a critical analysis of the NWS and SHAVE data collection
methodologies was completed and specific recommendations are
now provided for future datasets designed to collect details on
flash flooding. These main challenges include: (1) the need for
more accurate estimates of the event onset and recession, (2) A re-
fined, hydrologically relevant delineation of impacted zones using
GIS tools, (3) An estimation of systematic and random errors asso-
ciated to public polls and (4) a more reliable method for false alarm
quantification. Future work will expand the impact-focused evalu-
ation of flash flood predictability across a larger study domain in
space and time. We will also use the impact classifications devel-
oped in this study to refine the forecast tools so that they incorpo-
rate specific information about social vulnerability and exposure.
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